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Abstract 

 
In the current climate of tightening education budgets, an effort to assess the 

efficacy of financial aid support relies on tools that allow the identification of 

students most in need of assistance, as well as the methods of assistance that 

are most helpful to those students. Preliminary logistic regression model 

fitting found a positive relationship between financial aid support and 

probability of success. Student data is ‘dirty,’ however, with problems such as 

missing data and collinearity in the predictors, which can interfere with the 

ability of logistic regression to make accurate predictions. Logistic regression 

and gradient boosting were compared in their predictive accuracy using 

simulated data with the problems mentioned, revealing that gradient boosting 

outperforms logistic regression when data are missing. The two methods 

were then compared using real University of Alaska student data, where 

gradient boosting outperformed logistic regression in predicting student 

success with real data. 
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1. INTRODUCTION 
 

This study is a preliminary examination of how financial aid and other factors predict 
success, as measured by retention and graduation for students at the University of Alaska. 
The drive to understand the relationship between financial aid and student success is 
motivated by a need to examine the effectiveness of the need-based support that the 
university distributes to students. In the current climate of tightening budgets, there is a need 
to justify funding by demonstrating measurably increased student performance. It is also 
important to be able to identify students who are most at risk of not succeeding in the 
university system, regardless of their financial aid status, to direct assistance to them in order 
to improve their likelihood of success. 

This paper is organized into two sections: In the first part, I report notable results of 
exploratory analysis using simple and one-way interaction logistic regression models 
examining the effect of financial aid on student success. In the second part, I compare the 
accuracy of multiple logistic regression and gradient-boosting models in predicting outcomes 
for simulated data. I then compare their ability to predict success or failure using University 
of Alaska student data. 

The student data involved is largely ‘dirty’, including missing values and highly correlated 
predictor variables, and a convenient predictive model would be able to digest the data with 
minimal preparation. I chose to examine gradient boosting, a form of non-parametric 
decision-tree learning, because I wanted to explore a method that was likely to be more 
robust to these issues than logistic regression. 
 
2.  METHODS 

 
2.1  STUDENT DATA 
 

The University of Alaska data set consists of records for 10,488 students who entered 
the University of Alaska system as first-time freshmen from fall 2000 until fall 2003. This 
window of entry into the system allowed time to measure whether students graduated within 
six years. The data were extracted from the UA Decision Support Database using a SAS 
SQL query. Each record includes 100-plus variables, which include both quantitative and 
categorical variables. Many variables are manufactured linear combinations of other 
variables, such as total financial aid, which is the sum of all sources of financial aid – grants, 
scholarships, loans, etc. Others are naturally highly correlated, such as high school grade-
point average and SAT scores. Not surprisingly in a data set with this many variables, many 
records are missing at least some values. 
 
2.2  LOGISTIC REGRESSION 
 
2.2.1  Simple Logistic Regression 
 

The simple logistic regression model for estimating the parameters of the logistic 
response function is described by Kutner et al. (2005). We have Y1 ,Y2 … Yn responses to a 
predictor X1 where Yi can take the values 1 and 0, with probabilities pi and 1-pi, respectively. 
Therefore the probability function of Yi, a Bernoulli random variable with parameter 
pi=P(Yi=1) is  
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The simple logistic model states that these responses depend on the predictor variable as 

follows,  
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The model in (1) is non-linear in the parameters. The logit transformation linearizes the 
regression function and is defined as the log of the odds that Y takes the value 1. This turns 
the regression function into a linear function of the parameters, 
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Model parameters β0 and β1 are typically estimated by the method of maximum 
likelihood. From (1), the joint probability of the sample Y1 … Yn is 
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Thus, the log of the likelihood is 
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Using (3) and (4), the log likelihood of β0 and β1 is
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This is maximized with respect to β0	  and	  β1	  to obtain maximum-likelihood estimates b0 

and b1. Because no closed form solution exists that maximizes the likelihood function for β0	  
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and	  β1, numerical search procedures are required to carry this out. The resulting estimates 
are used in the fitted logit response function: 
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This can also be written as the fitted logistic response function, which yields estimated 
probabilities:  
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Predicting a response can be done by examining the estimated probability that Y1=1. A 
commonly used rule for predicting the value of Y1 is 
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2.2.2  Multiple Logistic Regression 
 

Expanding simple logistic regression to multiple logistic regression requires substituting 
β0+β1Xi with β0 + β1X1,i + … + βp-1Xp-1,i = XTβ in (5) to arrive at the log likelihood 
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From this, maximum likelihood estimates for the parameters, fitted probabilities and 

predicted responses are obtained as described above. 
 

 
 
2.2.3  Model Selection 
 

Where logistic regression models were compared, Akaike's information criterion (AIC) 
was used as part of a stepwise model selection procedure to determine the better model. 
Models with small values for AIC are preferred. In general, AIC is given by 
 
 )ln(22 LpAIC p −=  (10) 

 
where p is the number of parameters. 

AIC will return lower values for models with larger likelihoods, as long as the term, 2p, 
which penalizes non-parsimonious models, is not too large. 
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For logistic regression, AIC is adapted as follows: 
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The R step() procedure was used to compare models in a backward and forward 

stepwise fashion, which combines forward selection and backward elimination to decide 
which variables to include or remove from the model, based on their effects on AIC, as 
defined in (11). 
 
2.3  GRADIENT BOOSTING  
 
2.3.1  Regression Trees, overview   
 

A description of the gradient boosting machine procedure in R, gbm(), should begin 
with a discussion of regression trees, which are described by Hastie et al. (2008). 

Consider a model with a response variable Y, and two predictor variables X1 and X2. The 
feature space of X1 and X2, i.e., all combinations of values of each that can be used to predict 
the response,  is first split into two partitions at a point X1=t1 (Figure 1a), and the response is 
modeled by the mean of each partition, with the variable X1 and split point t1 chosen to 
achieve the best fit. (This process will be explained in greater detail below.) The resulting 
partitions, or nodes, are split at similarly chosen points until some stopping criterion is met, 
typically the minimum number of elements remaining within a partition, which is commonly 
referred to as minimum node size. In Figure 1a, the region of X1 < t1 is split next, at X2 = t2, 
using the same procedure to achieve the best fit within the region X1 < t1. Two more splits, 
t3 and t4 are made in the same manner before the procedure is stopped. The decision tree in 
Figure 1b represents the same information. 

 

 
 

Figure 1a. Figure 1b. Figure 1c. 
Figures from Hastie et al. (2008) 
 

Figure 1c shows the partitioned feature space, with the prediction surface fitted by the 
regression model 
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Here m is the partition index, and cm is the estimated response for the partition (or node) Rm. 
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2.3.1  Regression Trees, detail 
 

The estimated responses, cm, are obtained using sum of squares 
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thus the “best” estimate for cm will be the average of yi	  for each region, because the average 
minimizes the sum of squares: 
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Split points are chosen with an algorithm using a splitting variable xj and split point s. 
Starting with the complete data, define 
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Then seek j and s to solve 
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For any j,s, the inner terms are solved by 

 
 ( )),(ˆ 11 sjRxyavec ii ∈= , and ( )),(ˆ 22 sjRxyavec ii ∈=   
 

The best splitting variable and split point at each stage can then be determined by 
scanning through all possible values of j and s. The feature space is split, at Xj=s, into two 
new partitions, each of which is then subjected to the same treatment. This process 
continues until a user-defined minimum node size is reached for every partition. 
 
The resulting tree is then "pruned" using the cost-complexity criterion 
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where 

€ 

T  is the number of terminal nodes, or partitions, in the tree T,  Nm is the number of 
yi in node m, 

€ 

Ù c m  is the mean of yi in node m, 
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α  is the tuning parameter, large values of 
which result in smaller trees, and 
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To find 

€ 

Tα , weakest-link pruning successively collapses the internal node that produces 
the smallest increase in  
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NmQm T( )
m=1

T
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This continues until a single node is left, resulting in a sequence of subtrees of T. Among 

those subtrees will be 

€ 

Tα , the one that minimizes (14). A value for α is estimated using cross-
validation, choosing 

€ 

Ù α  to minimize the cross-validated sum of squares, which results in the 
final tree, 

€ 

TÙ α . 
 
 
2.3.3  Gradient Boosting, overview 
 

Boosting uses the idea that finding and averaging many rough prediction rules is easier 
than finding a single, highly accurate one. For regression trees, boosting makes use of a loss 
function that measures the loss in predictive power that results from a suboptimal model. An 
example is the minimized squared-error loss function (13) from the previous section.  

At each step, boosting adds to the model the regression tree that most reduces the loss 
function. Thus the model moves down the gradient of the loss function. (Elith et al. 2008) 

The first fitted regression tree maximally reduces the loss function, given constraints, for 
the data. The second regression tree maximally reduces the loss function for the residuals of 
the first tree. The third regression tree maximally reduces the loss function for the residuals 
of a model that contains both the first and second regression trees. Note that each tree is 
added to the model without changing the previous trees in the model. Slowing the rate of 
movement down the gradient toward a model with best predictive performance guards 
against overfitting the model, so the contribution of each tree is multiplied by the learning 
rate, a constant between 0 and 1 (usually close to zero, e.g., 0.001). The ultimate result can be 
imagined as a regression model that includes thousands of terms, each of which is a 
regression tree. Fitted values of the final model are the sum of the component trees, 
multiplied by the learning rate. (Elith et al. 2008) 
 
 
2.3.4  Gradient Boosting, as implemented by gbm() 
 
We begin by selecting the following (from Ridgeway, 2007):  
 
a. A loss function, 

€ 

Ψ y, f( ) 
b. The number of trees to examine, or iterations, N 
c. The interaction depth of each tree, K 
d. The learning rate parameter, λ 
e. The proportion of the data to sample as a training set for the next proposed tree, p 
 
Define 

( ) ( )pyxf
p

,minargˆ Ψ=  

For t = 1 to N: 
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1. Calculate the negative gradient: 
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2. Randomly select pxN cases, the subset to be used for the training set, from the dataset.   

 
3. Fit a regression tree with K terminal nodes, using only the observations randomly selected 
for this iteration. 
 
4. Compute predictions, ρ1, … , ρk: 
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ρk = argmin
ρ

Ψ yi, Ù f xi( )+ρ( )
xi ∈Sk

∑  

 
where Sk is the set of x's that define terminal node k. 
 
5. Update 

€ 

Ù f x( ):	  

€ 

Ù f x( ) = Ù f x( )+ λρk x( ) 
 
 
 
3.  RESULTS/DISCUSSION 
 

This section will be organized into two parts. First, I will report selected results from 
exploratory analysis of the student data using simple and two-variable logistic regression 
models. I describe in detail one model that demonstrates significant interaction between 
financial aid and student high school grade point average in predicting probability of 
graduation within six years. I also report on a group of simple logistic regression models.   In 
the second part, I will compare the predictive accuracy of logistic regression and gradient 
boosting. I do this using both simulated data sets and the real University of Alaska student 
data. 
 
3.1  EXPLORATORY LOGISTIC REGRESSION ANALYSIS 
 
3.1.1 Interaction Model Fitting 
 

Exploratory examination of simple logistic regression models suggested that the most 
important non-financial aid variables were high school GPA, a quantitative variable, and 
preparedness, a four-level categorical variable based on the number developmental courses a 
student enrolls in at the University of Alaska: “Prepared,” which indicates sufficient 
preparation in both math and English; “Unprepared, English” – prepared in math, but not in 
English; “Unprepared, math” – prepared in English, but not math; and “Unprepared” – 
unprepared in both English and math. I examined one-way interactions between each of 
these variables and each of eight quantitative measures of financial aid support as predictors 
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of six different measures of graduation and retention. This amounted to 96 one-way 
interaction models of potential interest.  

Of models that used interactions between preparedness or GPA and different measures 
of financial aid to predict graduation within six years, the model that I report in Table 1 had 
the lowest AIC. Average annual scholarship amount is a quantitative variable with values 
ranging from nothing to well above $20,000.  
 
 

Coefficient Estimate P-value 
Prepped(Prepared) -0.743 < 2*10^-16 
Prepped(Unprepared_English) -1.060 < 2*10^-16 
Prepped(Unprepared_math) -0.989 < 2*10^-16 
Prepped(Unprepared) -1.496 < 2*10^-16 
Ave. Scholarship 0.0002456 < 2*10^-16 
Prepped(Unprepared_English)*Ave. 
Scholarship -0.000109 0.0086 

Prepped(Unprepared_math)*Ave. 
Scholarship -0.0000733 0.0164 

Prepped(Unprepared)*Ave. Scholarship -0.000216 1.03*10^-15 

 
Table 1. Significant parameter estimates with P-values for the lowest-AIC model predicting 
graduation within six years. 
 

A number of interesting inferences can be drawn from this fitted model. For example, 
the model predicts that when scholarship support is zero, all categories of preparedness are 
associated with predicted probabilities of graduation that fall below 5.0ˆ =ip .	  	  These can be 
found by using (2) with each individual estimate of the categories of the prepared variable. 

While increasing average annual scholarship support is associated with increased 
probability of graduation, that effect varied for the different categories, hence the interaction 
terms. Table 1 shows that the most negative interaction term estimate is for students who 
are unprepared in both math and English. The next most negative is for students unprepared 
in English, followed by students unprepared in math. This is illustrated in figure 2, where we 
see that for the least prepared students, increasing levels of scholarship support are 
associated with a modest increase in probability of graduation, followed by a larger increase 
for those unprepared in English, then those unprepared in math. The ‘prepared’ category, 
the baseline against which the other categories are compared, is associated with the highest 
intercept, as well as the greatest increase in probability of graduation with increasing levels of 
scholarship support.  
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Likelihood of Graduation as a Function 
of Preparedness and Average Annual Scholarship Support

Prepared

Unprepared, English

Unprepared, Math

Unprepared, Both 0

$2,000

$4,000
$6,000

$8,000
$10,000

$12,000

0.0

0.2

0.4

0.6

0.8

1.0

Preparedness
Ave. Annual Scholarship

P
ro

ba
bi

lit
y 

of
 G

ra
du

at
io

n 
W

ith
in

 6
 Y

ea
rs

	  
 
Figure 2. Predicted probability of a UA first-time freshman (fall 2000 to fall 2003 cohorts) 
graduating within 6 years as a function of average annual scholarship support and 
preparedness.  
 
 
3.1.2  Exploratory Simple Logistic Model Fitting 
 

I examined 960 simple models, each considering the relationship between a single 
predictor variable and measures of retention or graduation. I summarize the results from 48 
of those models in Figure 3. All predictor variables were continuous measurements of 
financial aid support, while all but one response variable described binary measures of 
success and were fitted with logistic regression models. The exception was “years to 
graduation,” which I fitted with simple linear regression models. 

Each cell in Figure 3 represents a single, simple model of the relationship between the 
predictor variable at the top of the column and the response variable at the left of the row. 
Cells with green circles represent models with a positive coefficient that was significant at 
the 0.1 level. The exception to this is the “Yrs. to Grad.” row, which represents the negative 
of the coefficients; in that row, circles indicate a model whose predictor was associated with 
reduced number of years to graduation. The diameter of each bubble is proportional to the 
magnitude of the coefficient. Predictor variables with the “Yr1” prefix are measures of first-
year support; “Ann.” indicates average annual support over the course of a student’s 
academic career. “FA” refers to all financial aid received, which includes scholarships grants 
and loans. "Ret." refers to retention after a given year. Thus "Yr1 Ret." refers to retention to 
sophomore year. 
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Figure 3. Positive predictors of success for full-time, first-time UA freshmen, fall 2000 - fall 
2003 cohorts 
 

There are several notable conclusions that can be drawn. For full-time, first-time 
freshmen, overall financial aid support, primarily driven by scholarship support, is 
significantly positively associated with increased likelihood of success. First year scholarship 
support is significantly positively associated with graduation and retention. Average annual 
scholarship support across academic career is associated with improved likelihood of 
graduation and reduced number of years to graduation. 
 
 
3.2  PREDICTIVE MODEL COMPARISON 
 
3.2.1  Simulation Study 
 

The Alaska student data set contains several problems that could interfere with logistic 
regression’s ability to accurately model and predict student success, particularly for models 
that contain larger numbers of predictor variables than the models considered above. 
Specifically, the data set has more than 100 predictor variables to select from, many of which 
are highly correlated, and numerous observations in the data set contain missing values. 

It has been suggested that gradient boosting models are superior for making predictions 
from data sets that contain these sorts of problems. 

I performed a simulation study to compare the predictive ability of logistic regression to 
gradient boosting. Data were simulated to investigate the effects of multicollinearity, missing 
values, and model mis-specification on the predictive accuracy of the models. 

I used the R function glm() to fit logistic regression models. Because of the simplicity of 
the models, I did not improve them with techniques such as stepwise model selection. To fit 
gradient boosting models, I used the R gbm() function in the gbm package with standard 
settings (Ridgeway 2007) and allowing up to one-way interactions. As with the logistic 
regression models, the gradient boosting models were simple and many, and I took no action 
to optimize them. 

For each level (i.e., of percent missing, multicollinearity) of each head-to-head 
comparison, I generated 100 distinct 2,000-record data sets consisting of a response variable 
and two predictor variables. Each data set was split into two equal parts, one of which 
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became the training set used to fit each logistic regression and gradient boosting model. The 
other part became the test set on which the predictive powers of the models were assessed. 
Predictive accuracy and its variance for logistic regression and gradient boosting were 
recorded for comparison. Predictions, i.e., values of Y, were assigned according to (8).  
 
3.2.2  Simulated Data 
 

I used R to generate data sets with two predictor variables, a binary response variable 
and known parameters (See Appendix 5.1). Each data set was then split into equally sized 
training and testing sets. 

To compare the effect of missing values on predictive ability, I replaced randomly 
selected values of one predictor variable of the training set and test set with NAs. Missing 
values cause the glm() function in R to return NAs, rather than predictions, so I removed 
rows with missing values for the data used to fit the logistic regression model. I tested the 
following levels of missingness in the data: 0%, 10%, 20%, 40% and 60%. 

To compare the effects of correlation within predictor variables on predictive ability, I 
used R to generate a data set with a defined correlation between the predictor variables (See 
Appendix 5.2). I tested the following levels of correlation between the predictor variables: 
0.0, 0.1, 0.2, 0.4, 0.75 and 0.90. 

To compare the effects of mis-specification of the model, I created a normal data set 
with two predictor variables, then threw out one of the predictors used to generate the 
responses and replaced it with a variable generated in the same way, but which was not used 
to generate responses, for the training and testing steps. 

Of the three 'dirty' characteristics that I tested with simulated data, only missing values 
brought about a marked difference in predictive performance between logistic regression 
and gradient boosting (Table 2). Figure 4 shows the results of that simulation. Each data 
point represents the average of the percent correctly predicted by 100 models fitted to 100 
distinct data sets. Both models predicted correctly more than 95 percent of the time when 
no data were missing, and both declined in accuracy as the proportion of missing data 
increased. With 60 percent missingness, however, gradient boosting was still predicting 
correctly three-quarters of the time, while logistic regression had fallen below 50 percent. 
Variance of percentages correctly estimated for both techniques grew as the percent missing 
grew, but remained small enough (<< 0.1) that error bars are subsumed in the data point 
markers in the chart.  

With no missing values, logistic regression predicted outcomes slightly more accurately 
than did gradient boosting (97.2% vs. 96.4%), with slightly smaller variance (0.0031 vs. 
0.0039). This pattern remained true for tests of varying degrees of correlation and of 
uselessness of one predictor variable. Predictive accuracy of both techniques dropped as 
correlation increased, but logistic regression continued to predict slightly (~1%) better than 
gradient boosting. 
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Figure 4. Percentage correct predictions vs. percentage missing data, logistic regression vs. 
gradient boosting, simulated data. 
 

That logistic regression was able to slightly outperform gradient boosting when no data 
were missing is likely due in part to the data set being simulated using the logistic function 
with three parameters, which is likely the ideal data for fitting with a three-parameter logistic 
regression. The benefit of gradient boosting as a non-parametric technique would be likely to 
occur when the process generating the data was more cryptic, as in the real-world data set 
used in the analysis below. 
 

Data Issue Ave. Percent Correct, 
Logistic Regression 

Ave. Percent Correct, 
Gradient Boosting 

Missing Data (%)   
0 97.19 (0.0557) 96.44 (0.0629) 
10 87.64 (0.0446) 92.20 (0.0849) 
20 78.67 (0.0501) 88.67 (0.0969) 
40 62.16 (0.0621) 82.00 (0.1040) 
60 47.58 (0.0733) 75.44 (0.1478) 

Correlation between predictors   
0 94.24 (0.0776, 0.8342)  93.56 (0.0834, 0.8078) 

0.10 94.22 (0.0766, 0.8331) 93.44 (0.0828, 0.8059) 
0.20 94.24 (0.0735, 0.8332) 93.30 (0.0855, 0.8021) 
0.40 93.77 (0.0698, 0.8199) 93.89 (0.0810, 0.7902) 
0.75 91.36 (0.0883, 0.7414) 90.12 (0.1096, 0.7105) 
0.90 87.55 (0.1094, 0.6443) 85.74 (0.1379, 0.5903) 

Extraneous predictor variable 87.53 (0.0968) 87.31 (0.1036) 

 
Table 2. Results of simulated data tests. Each level of each data issue represents 100 logistic 
regression and gradient boosting models fitted to 100 distinct 2,000-record data sets, each 
consisting of a response variable and two predictor variables. Standard deviation and R-
squared of percents correct in parentheses. 
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3.3  LOGISTIC REGRESSION VS. GRADIENT BOOSTING, REAL DATA 
 
The result of the comparison of performance on data with missing values is of particular 

concern for fitting predictive models for UA student data. The UA student body has an 
average age of approximately 30 (UA in Review 2011), and older students are more likely to 
be missing data values. The average age of students in the data set with 'NA' for high school 
gpa was 25.4. The average age of students who had a non-'NA' value for gpa was 19.7. It 
therefore should not be surprising that 26.3 percent of the sample records are missing values 
for high school GPA, one of the most important predictors of graduation. 

I carried out a preliminary comparison using gender, Pell grant status, preparedness, UA 
Grant status, high school gpa, average annual scholarship support, the interaction between 
gpa and scholarship support and the interaction between preparedness and scholarship 
support to predict graduation within six years. I used forward and backward stepwise model 
selection based on Akaike Information Criterion (R function step()) to improve the logistic 
regression model, and allowed the gradient boosting machine to use an interaction depth of 
3. Other settings for the gradient boosting machine (R function gbm()), were standard, 
recommended starting settings (Ridgeway, 2007). The data set was randomly split into a 
5,000-record set to train the models, and a 5,488-record set to test the models. In each case 
probabilities greater than 0.5 were considered positive predictions (Yi=1), and those less than 
or equal to 0.5 were considered negative predictions (Yi=0). Accuracy was measured as the 
number of correct predictions divided by the total number of predictions.  

Using the student data, the procedure above produced the fitted logistic regression 
model described in table 3. This model predicted student graduation within six years with 
54.5% accuracy. The two strongest positive predictors of graduation in the model are GPA 
and not receiving Pell grant support, respectively. Receiving UA grant support is not 
significantly associated with graduation. Given that every student falls into one of the 
preparedness  
 
 

Coefficient Estimate P-value 
Prepared -5.233 3.12*10^-12 

Unprepared_English -5.632 8.71*10^-14 

Unprepared_math -5.506 1.03*10^-13 

Unprepared -5.706 9.14*10^-15 

Ave. Scholarship 0.00000462 0.8687 

Pell, no w/application 0.2491 0.0436 

Pell, no data 0.2999 0.206 
UA grant, no w/application 0.7628 0.2666 

UA grant, no data 0.7704 0.2661 
UA grant, unavailable 0.5325 0.4352 

GPA 1.244 < 2*10^-16 

Unprepared*Ave. Scholarship -0.00009451 0.0279 

Unprepared_English*Ave. Scholarship 0.0001037 0.1077 
Unprepared_Math*Ave. 
Scholarship 0.0001031 0.0211 

 
Table 3. Parameter estimates for the logistic regression model fitted on University of Alaska 
student data. Significant parameters in bold. 



	   15	  

fa
ct

or
(G

E
N

D
E

R
)

fa
ct

or
(p

el
l_

ye
s)

fa
ct

or
(p

re
pa

re
d)

Relative influence

0 10 20 30 40 50 60

 
categories, their strongly negative coefficient estimates can be seen to represent the low 
baseline probability of graduation among all University of Alaska first-time freshman in the  
data set, which is less than 0.30. Note that the preparedness coefficients follow the same 
relative pattern seen in the model described in Table 1. Despite the fact that average 
scholarship support was not significant, its interaction with levels of preparedness was. 

The model fitted by the gradient boosting machine predicted student graduation within 
six years with 74.6% accuracy. The description in Section 2.3 should make clear that there is 
no easy way to summarize a gradient boosting model in the way a logistic regression model 
can be summarized, but examination of the relative influence and partial dependence plots 
of the variables in the model can provide some insight. 

Figure 5 is a plot of the relative influence of the variables in the model. Relative 
influence is a function of the number of times a variable is selected for splitting, weighted by 
the improvement to the model as a result of each split, and averaged across all trees. The 
influences are scaled to sum to 100 (Elith et al 2008). Figure 5 clearly shows the importance 
of grade point average in predicting graduation. Approximately tied for second are 
preparedness, already identified as a strong predictor of success, and scholarship support, 
which is of interest to this study. 

Note that the hierarchy of importance of predictors in the gradient boosting model is 
different from that of the logistic model. While both identify GPA as an important predictor 
of graduation, gradient boosting model then lists preparedness, scholarships and Pell 
support, while the logistic regression has lack of Pell support followed by interactions 
between preparedness and scholarship support. This can be explained by the fact that the 
relative influence plot in Figure 5 is a measure of the number of times a predictor is involved 
in decisions, which takes into account interaction ‘terms,’ as well as simple ‘terms.’ 

 
	  

GPA	  (61.2)	  
	  
Preparedness	  (14.6)	  
	  
Scholarships	  (13.7)	  
	  
Pell	  grant	  (5.6)	  
	  
UA	  grant	  (3.4)	  
	  
Gender	  (1.6)	  

	  
	  
	  
	  
 
Figure 5. Relative influence of the predictor variables in the GBM model. 
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Partial dependence plots show a variable's effect on the gradient boosting model after 
the mean effects of all other variables in the model have been accounted for. Figures 6a and 
6b show the partial dependence plots for the variables in the fitted gbm model. The vertical 
axes show the logit of the probability of graduation. 

Figure 6a contains partial dependency plots of the three most influential variables in the 
gradient boosting model. We see a strong positive relationship between grade point average 
and probability of graduation, which is intuitively obvious and supports other findings. We 
also see that being prepared in both math and English is positive predictor, relative to the 
other categories of preparedness. Being prepared in English but unprepared in math also is 
associated with an increased probability of graduation, but to a lesser degree, while being 
unprepared in English or in both math and English is not. First-year scholarship support 
also appears to be a positive predictor of graduation, at least for the first $5,000. Beyond 
that, the predicted probability falls. 

While Pell grant support was relatively uninfluential in the model, the partial dependence 
plot does show a relationship that has been observed in the logistic regression model and 
elsewhere (Mortenson, Brunt 2009), which is that Pell grant support is negatively correlated 
with probability of graduation. The final two variables, UA Grant status and gender, have so 
little influence that commenting on their partial dependence plots is not meaningful. 
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Figure 6a. Partial dependence plots of variables in the fitted gbm model. 
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Figure 6b. Partial dependence plots of variables in the fitted gbm model. 
 
 
 
 
4.  CONCLUSIONS 
	  

This study outlined the theory behind logistic regression and gradient boosting. It 
reported on preliminary logistic regression model fitting intended to explore the relationship 
between financial aid, measures of academic preparedness and student success, measured 
primarily by graduation within six years, and secondarily by retention. These preliminary 
models suggested that financial aid support, and specifically scholarship support, is 
associated with an increase in University of Alaska students' probability of staying in school 
and graduating.   

A comparison between the predictive abilities of logistic regression and gradient 
boosting revealed that when using simulated data with controlled levels of problematic 
characteristics, logistic regression performed slightly better than did gradient boosting, 
except when data were missing, when gradient boosting markedly outperformed logistic 
regression.  

It is of interest to examine the historical relationship between predictors, especially those 
involving money, and measures of success in University of Alaska student data. This allows 
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us to identify successful and unsuccessful, and potentially wasteful, efforts to improve 
student success. It would also be beneficial to be able to use current data to predict the 
probability that UA students will be successful, and so identify those most (and least) in need 
of assistance. UA student data can be problematic. Particularly troublesome is the fact that 
high school grade point average, a powerful predictor of student success, is missing from 
large numbers of student records, especially those of the many older, non-traditional 
students. This study demonstrated that gradient boosting, which markedly outperformed 
logistic regression in predicting student success when data were missing, has the potential to 
be a useful tool in attempting to deal with these challenges. This suggests the benefits of 
further investigation of gradient boosting techniques, especially in the area of model 
interpretation. 
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5. APPENDIX 
 
5.1. R code to simulate data. 
 

N<-2000 
alpha<-0.34; B1 <- 1.45; B2 <- -2.44; 
prob<- function(alpha, B1, B2, X1, X2) {  

(exp(alpha+B1*X1 +B2*X2))/(1+exp(alpha+B1*X1 +B2*X2)) 
   } 
X1<- runif(N, min=-1, max=1)*5 
X2<- runif(N, min=-1, max=1)*10 
p<- prob(alpha, B1, B2, X1, X2) 
YY<- rbinom(N,1,p) 
data<-data.frame(y=YY, x1=X1, x2= X2, p=p) 

 
The function prob() returns a probability (p) from the logistic response function (7). 
 
YY<- rbinom(N,1,p) assigns a binary response based on the probability generated by the 
logistic function above. 
 
5.2. R code to create a vector of matching length and defined correlation. 
 

corr.vect<- function(var1, rho) { 
  N<- length(var1) 
   newvar<-runif(N, min=round(min(var1),0), max=round(max(var1),0) ) 
  X<-cbind(var1, newvar) 
  dim(X) <- c(N, 2) 
  M<-array(rho, dim=c(2,2)) 
  diag(M)<-1 
  cF<- chol(M) 
  Y<-X%*%cF 
  Y[,2] 
  }  
 
correlation<- c(0.0,0.1,0.2,0.4,0.75,0.9, 0.95) 
 
X1<- runif(N, min=-1, max=1)*5 
X2<- corr.vect(X1, correlation[ii]) 
p<- prob(alpha, B1, B2, X1, X2) 
YY<- rbinom(N,1,p) 
    
data<-data.frame(y=YY, x1=X1, x2= X2, p=p) 

 
Note that in the corr.vect() function, M is the desired variance-covariance matrix, with 
variances 1 on the diagonal, and the off-diagonal covariances equal to rho. A square-root of 
M is generated by chol(M), the Cholesky decomposition of M. Multiplying X, the n by 2 
matrix consisting of [,1], the original vector, and [,2], the randomly generated vector of the 
same length and amplitude, by the Cholesky decomposition of M returns an n-by-2 matrix of 
[,1], the original vector, and [,2], a new vector with correlation rho with [,1]. The correlation 
between variables generated by this function is fairly accurate with large N, say N> 500. 
With smaller N, and especially with small absolute values of rho, the response becomes more 
stochastic. 
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