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Clear Fire 2022
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Larger fire seasons are hecoming more common in Alaska

@ Acres Burned (109)

Duff plug from
black spruce
stand.

Millions of Acres Burned

Weather

2022 had several unique attributes

e Earliest start to the fire season - Kwethluk fire began on April 16th on the tundra nition Fuel
* In 2022 3.3 million acres burned with record number of acres in SW Alaska
& *Also unusual was the abrupt start and end in 2022 in Interior Alaska aska




Goal BF1

Produce seasonal fire outlooks by
merging data on lightning probability
and available fuels with seasonal
climate forecasts.

Boreal Fires Research Goals

Goal BF2

Enhance active fire characterization,
spread prediction, and severity
assessment in the boreal through
improved remote sensing, short-term
weather data, and field
measurements.

Goal BF3

Develop science-based options for
improving wildfire management
policy to maintain ecosystem service
flows and foster community
resilience.

Goal BF4

Hire and train researchers and share
results with academic audiences and

stakeholders.
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Interrelation of Research Goals 1-3

Preparedness Response Recovery
Q1: Fire Risk (£ 1 year) Q2: Active Fire Behavior Q3: Human-Wildfire

(hours to days) Interaction (fire + 2 years)

Lightning Human-caused
Ignitions lgnitions

Climate Conditions Fire Weather Active Fire Property and (?_ommumty .
Resilience, Social

e (Temperature, Wind, .
and Variability Hurmidity Behavior Infrastructure Costs and Benefits

Vegetation and Fuel Management Change to

Topography

Characteristics and Policy — Ecosystem Services
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Presenter Notes
Presentation Notes
Transition:   to  how we will  cover our topics
Ecosystem Services & Wildlife-Urban Interface (Goal 3)
Vegetation (Goal 2)
Climate Drivers (Goal 1)


Ecosystem Services & Wildland-
Urban Interface Group

Our aim was to co-produce knowledge on the

effects of wildfire on: e Availability of ecosystem

services
e \Wildland-urban interface

Researchers

Managers Communities



Immediate Effects of Wildfire on Moose Harvest

_,’V/J.“ /3'\ : s ~—
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Model variables:
e Moose harvest data - 1983-2019
e Predictors - wildfire characteristics, habitat
burned, hunter access



60
50
40
3
2
1

Mean # of Moose Hunters
[ ] [==]

=

0.5

0.

.

0.

Mean Hunter Success
(%]

0.2

Wildfires have a very small effect on moose hunting

Effect=-0.02 Effect=-0.05 Effect=-0.15 Effect=-0.21
Effect<-0.01
Small (n=1546) Medium (n=239) Large (n=59) Very large (n=28)All Data (n=1872) effeCt
m Pre-Wildfire m Post-Wildfire eSt|mated IN

only the very

Effect=-0.04 ffect=-0.01 Effect=-0.05 Effect=-0.19 Effect=-0.04 Iargest
(1.5%)
wildfires

Small (n=1546) Medium (n=239) Large (n=59) Very large (n=28) All Data
(n=1872)

m Pre-Wildfire mPost-Wildfire



Post-wildfire response of headwater

streams in the boreal forest

Shovel Creek Fire

23,000 acres burned in 2019

Sampled 3 headwaters of two
streams monthly June-September
2020 (n=24)

-Shovel Creek " RDAT (12.6%)

-McCloud Creek


Presenter Notes
Presentation Notes
In summer 2020 we sampled 6 headwaters, monthly, on a mountainside that was recently burned. 
Three of the sites were control sites, and three were recently burned sites.
At each of these sites we collected habitat, macroinvertebrate and habitat data. 

Ultimately, we found that recently burned headwaters had less canopy cover, less large wood and more organic matter.
The stream water chemistry at recently burned sites indicted that recent sites had higher total dissolved nitrogen, but lower dissolved organic carbon and soluble reactive phosphorus. 

Our redundancy analysis revealed that particular biota are more associated with particular stream characteristics which reflect their fire history.
For example, we found more that more organic matter was strongly associated with recently burned streams which had more dipterans (AKA flies).

This study is important because it provides baseline data of these headwater streams’ response to fire in a warming climate. As climate change progresses macroinvertebrate community structures are liable to change which has implications for downstream consumers, such as salmon. 


Exploring effects of wildfire on juvenile Chinook salmon

e Chinook salmon declines have caused hardship in
fishing communities throughout Alaska

e Understanding wildfire effects on salmon is a critical
knowledge gap identified by Alaska Native communities

Question: How does wildfire affect juvenile Chinook feeding and growth?

Research opportunity: The 2019 Nugget Creek Fire bisected a major
Chinook spawning and rearing area on the Chena River

Objectives: Compare water quality, invertebrate drift, and salmon body

size betwee -'5;“-»9. A0 engad.and reference sites Qg
' ., Mainstem | Nopars

Tributaries




Wildfire changed water clarity, but not fISh food
or juvenile salmon growth
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When beavers get burned, do fish get fried?

William Samuel, Jeff Falke, Ken Tape, Santosh Panda, Andrew Seitz

Background [Chuanika ]
* Beavers and wildfires interact ” e —

» Both beavers and wildfires
have important effects on fish

Research Question

1990-1999
1980-1989

e How do beavers mediate the effects of
wildfire on fish and aquatic habitat?

Stream without Beavers Stream with Beavers
o We must first ask how fires
i iti Fire Conditions
affect beavers = ¥ 5512;2%“;'2‘:;:‘;; . ¥ gei“";

e DO m—
Water Table

Adapted from Fairfax and Whittié2020



When beavers get burned, do fish get fried?

William Samuel, Jeff Falke, Ken Tape, Santosh Panda, Andrew Seitz

Beaver Ponds

Study Area

Methods

« Satellite imagery to enumerate beaver
ponds (n=218)

» Model effects of wildfire characteristics
on beaver pond characteristics

Preliminary Results

e Burned areas had more but smaller
beaver ponds

Chatanika R.

Goodpaster R.

Shaw Creek

o Exploring whether wildfire
characteristics can predict beaver
pond abundance and distribution Digital Elevation

Models (DEMs) ;
? -
<4——

Vegetation
Models

e A

Z
Py
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Estimating Wildfire Risk Around Rural
Communities in Alaska M.S. student Michelle Quillin

Exposure To Hazardous
Fuels In Surrounding Area
0-20, very low

20-40, low exposure

40-60, moderate exposure
60-80, significant exposure
80-100, maximum exposure

Increase capacity for forest research in
rural communities using drones

100

@ﬁ"@%‘ Tanana
8 4 Chiefs 14

W | Conference



What socio-ecological factors are associated with
buildings that burned during the McKinley wildfire?

Timeline McKinley Wildfire
(73 MeKinleyFire
* August 19

August 20
*  August 21
*  August 22

August 23
*  August 24

D Survived
@ Burned

Ecological
Wildfire hazard on parcel
Percent cover of trees around
buildings at different scales
(10, 30, 100, 500m)
Burn severity from Sentinel-2

Social
Near other buildings
Lot size
Value of home
Building size

15



McKinley wildfire
research: results

When there is no building
burning within 30m: 48%
lower odds of the structure
burning

For every 100 increase
in burn severity 3%
increase odds of the
buildingburning

Odds ratio that a structure burned in the McKinley Fire
Error bars represent 95% conf. intervals

No burning building w/in 30m

Lot size (*10) ¢ i 0.98

Buildingsize (* 10, sq. root feet)

JIIIIEIIIII
2

Wildfire exposure within 100m (* 10; 100m) % 1.06
——
# of buildingson parcel =— 1.07
Buildingvalue (* $10,000) -E 0.99

Vegetation cover within 100m (* 10) 0.96

Burn severity within 30m (* 100) % 1.03

0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
Odds Ratio
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Presenter Notes
Presentation Notes
Regarding take-home messages for our joint work, I would suggest something related to the following:
1. understanding wildfire risks and vulnerability to communities requires consideration of both social and ecological factors, and how they interact.
2. policies can change incentives and influence behavior in ways that reduce risks and promote resilience
Regarding policies, I would say that politically, we are not ready to impose policies that impose restrictions or requirements for people seeking to build in the WUI, such as minimum lot sizes and mandatory wildfire insurance. However, it is important to start the conversation and develop the science base for such policies and how they could help. As more people build in fire-regulated ecosystems and climate change continues to increase wildfire risks, policies like these will be needed at some point in the future to control ever-rising suppression costs, loss of ecosystem services, damage to homes and infrastructure, and risks to public safety.



.

Fuel mapping & remote sensing activities

Wildfire fuels science results

a.
b.
C.
d.

Anushree Badola: new results from vegetation mapping with simulated hyperspectral data
Santosh Panda: Alaska-wide mapping tool

Chris Waigl: on tree to stand scale fuel mapping with HySpex
Simon Zwieback w/ Yuan Tian / Jessie Young-Robertson: fuel condition & insect damage

\

.~ | HySpex Image Cube
{ RGB bands:

291 (1569 nm)

141 (854 nm)
20 (471 nm)

17



Presenter Notes
Presentation Notes
various forms of hyperspectral. a very large number of contiguous spectral bands. image cube - here from hyspex, 2021 Bonanza Creek data 
bands - pseudo true color rgb, deciduous bright green, confiferous dark green, bare soil pink, fire scars red, water blue


.

We use hyperspectral and multispectral remote sensing to characterize
wildfire fuels, as well as active and post-fire signals

Hyperspectral sensor (eg. Hyperion, HySpex)

=
)
=

ce (W/m?/sr/pm)
&

102

Spectral radian
=
1)

Multispectral sensor (eg. Landsat, Sentinel-2)

=
)
=

(W/m? fsr/ )
2

=
)
d

Spectral radiance
=
1)

Watch our wonderful video "Introduction to
Hyperspectral Imaging" on YouTube!
https://www.youtube.com/watch?v=0gs-Ohg8KIM
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Presenter Notes
Presentation Notes
To make the difference between hyperspectral and multispectral data we show on the left how the bands of MS and HS distribute across the wavelength spectra. HS has many contiguous bands spanning the visible, nir and SWIR spectrum. MS has selected bands - here landsat, which is similar to Sentinel-2. Main advantage of HS is that it acquries a reflectance spectrum at each pixel. The main  advantage of satellite-borne MS is that we can image large areas up to the AK Boreal domain. 
To bridge this gap Anushree Badola is working on new methodologies and will now talk about the, 


Vegetation Mapping in Boreal Region of Alaska

Objectives: Output Products:
Develop novel algorithms for improved (finer resolution and better accuracy) e Simulated hyperspectral data
vegetation/fuel mapping for boreal Alaska including conifer fraction e Improved vegetation map

e Needleleaf cover map

148°30'W 147°30'W 147°W

. remote sensing rﬁfy Vegetation Classes
Il Masked
Il Open black spruce forest
Bl Black spruce woodland
[T Closed black spruce forest
[ Closed white spruce forest
[ White spruce woodland
Il Open paper birch forest
B Open quaking aspen forest
i "1 Open balsam poplar forest
s4°30'N [ Closed paper birch-quaking aspen forest
\ 771 Open spruce - balsam poplar forest
I Open paper birch - quaking aspen forest
B Open spruce - paper birch forest
Il Closed spruce - paper birch - quaking aspen forest
Closed tall alder
[0 Other
B Wetlands

Article
Hyperspectral Data Simulation (Sentinel-2 to AVIRIS-NG) for
Improved Wildfire Fuel Mapping, Boreal Alaska

Anushree Badola "%, Santosh K. Panda ", Dar A. Roberts >, Christine F. Waigl 1%, Uma S. Bhatt ' ¥,
Christopher W. Smith 1) and Randi R. Jandt *

Badola et al. (2021), Editor’s Choice

7 . . . x

. International Journal of Applied Earth Observation
e and Geoinformation m
ELSEVIER Volume 112, August 2022, 102891

A novel method to simulate AVIRIS-NG
hyperspectral image from Sentinel-2 image for
improved vegetation/wildfire fuel mapping,
boreal Alaska

Anushree Badola® O =, Santosh K. Panda ®® &, Dar A. Roberts ¢ &, Christine F. Waigl ¢ =,
Randi R. Jandt ¢ =, Uma S. Bhatt * =

Method: Random Forest Classification

640N

Badola et al. (2022)




Download Vegetation Map (.tif layers)

Map spatial resolution: 10m X 10m

<> Get directions @ Zoom to

AK Boreal Sentinel2 Index: 06 WVV

Name 06WWV
Class Yes
I Download Link View
e U
{
N
N
=
[
4
~
»
2w
v . ‘L, L
A r -

eru*pg )
Ses WS N Tt Gulf of

Alaska

abadola21 Add files via upload

I Data

[ Classification.ipynb

[ DEM_preprocessing.ipynb

Y Prediction.ipynb

O

README.md

[ simulation.ipynb

README.md

2hysim

Codes Sharing

598d76a 3 minutes ago
Delete Readme

Add files via upload

Add files via upload

Update Prediction.ipynb
Update README.md

Add files via upload

O 25 commits

39 minutes
ago

3 minutes ago

38 minutes
ago

13 minutes ago
12 hours ago

30 minutes
ago

7

Python codes to simulate hyperspectral data and generate vegetation map for boreal Alaska at Sentinel-2 scale.
There are three Jupyter notebooks: DEM_preprocessing, Simulation, Prediction
1. DEM_preprocessing: This notebook is for preprocessing DEM that includes clipping and reprojecting DEM as

Sentinel image. You can download ASTER Global Digital Elevation Model (GDEM) (https://earthdata.nasa.gov/). You

SO (HUEE! £ RO, SO 1 W | JUSE~ W OPOUU SN T K SO X S, DU 51 O IO U L SO, 11— < (SO . SO W

Github Link:
https://github.com/abadola21/hysim



Pixel Unmixing using MESMA

AVIRIS-NG (airborne data) Hyperspectral image: 425 bands Image pixel: multiple classes

Research Questions:
1. Can pixel unmixing estimate the needleleaf fraction in a mixed boreal forest?
2. How do we validate pixel unmixing estimations?



Methodology

Endmembers Endmember Spectra

Wavelength (nm)

0.7
AVIRIS-NG Meedleleaf —Needleleaf —Broadleaf —NPV
Image Broadleaf 06
NPV 0.5
g 0.4
c
©
l -.io-’ 03 /'V‘ /LJ-\’\
[ Spocral Unmixing ) 1 TToTTTIITwC 02 s
[ [} - .
Validation
] . []
Algorithm 0.1 \
] [}
. . High 0 e
' 1 g
. 377 527 677 828 978 1128 1278 1429 1579 1729 1879 2030 2180 2330
' MESMA X Resolution
] ]
] ]

Image

AVIRIS-NG: Airborne Visible InfraRed Imaging Spectrometer -
Next Generation

Ground
Data

Fractional cover
maps for

L

Needleleaf and / MESMA: Multiple Endmember Spectral Mixture Analysis
Broadleaf | === ceecececeaceaa- NPV: Non-Photosynthetic Vegetation
Manuscript (in prep)

Crabbé et al. (2020) Presented at AGU Fall Meeting 2022



Result

MESMA output

Needleleaf fraction, Bonanza Creek LTER

Channel Class

- Broadleaf il il . : Needleleaf Fraction

: MESMA
Green Needleleaf o B 1m @ |




Visual Comparison with High Resolution Data

SkySat data

*

Fraction output has
a similar needleleaf
vegetation pattern.

e Grass is unclassified
in the fraction output



Validation Map Assessment for Needleleaf Fraction Cover

Validation Map vs. Ground Data
40

30 -

% [ ]
E 20 ° -
3 °
E 10 :
° Correlation: 0.9
0 10 15 20 25
AVIRIS-NG (5m) Ground Data
26
. ®
g " High correlation between
g o _ needleleaf tree counts and
5 needleleaf class pixels
Validation map (HySpex) £
2
Needleleaf Other

73% mapped correctly



Summary

e A novel approach to simulate hyperspectral data
to generate improved vegetation map for whole
boreal Alaska

e High flammable needleleaf species mapping to
aid wildfire management practices

e A novel approach to validate the unmixing

estimates



Vegetation Maps, Boreal Alaska

StoryMap: Vegetation Maps of Boreal Alaska (Tile: 100 km x 100 km)

Green Tiles: Vegetation (.tif) file available for download

OOOOO

sssss



Presenter Notes
Presentation Notes
StoryMap: https://storymaps.arcgis.com/stories/41df03ea574444c98280a49351cf512a

https://arcg.is/0aWPS50

.

Vegetation

mapping with

HySpex

1m repeat imagery
from field sites at
CPCRW (2019 &
2020) and BCEF
(2020 & 2021)

Reveals rich details in
vegetation cover
structure and
composition. Yellow:
Field plots. Blue:
individual tree data.
Pink: Classifier
training hexagons

Waigl et al., in
revision

70°N "

-65“1\:11 AV

60w e 140w 709

_|Bonanza Creek Experimental
[~ [Forest (BCEF)

6N v

55°N.

Caribou-Poker Creeks

Research Watershed (CPCRW)| ..

Vegetation type

Black Spruce Woodland with Tussocks

Black Spruce/Tamarack Forest

Closed Black Spruce Forest

Closed Black/White Spruce Forest

Closed Paper Birch Forest

Closed Quaking Aspen Forest

Closed Quaking Aspen/White Spruce Forest

Closed Spruce/Paper Birch Forest

Closed Spruce/Paper Birch/Aspen Forest

Closed Tall Alder Shrub

Closed Tall Birch/Willow Shrub

Closed White Spruce Forest

Open Black Spruce Forest

Open Quaking Aspen/Spruce Forest

Open Spruce/Paper Birch Forest

Open Tall Alder Shrub

Open Tall Birch Shrub

Open White Spruce Forest

Wet Sedge Meadow

Wetlands

28



Presenter Notes
Presentation Notes
Processing of HySpex has progressed, and we have now for our two key study areas 2 datasets each covering our field sites. 
Enjoy
Various forest types. BUT: we want to map forest type, which is a stand-level variable. The high spatial resolution is both a benefit and a challenge to translate this data into meaningful scientific information and knowldege. 


Pixel-level analysis using tree-crown detection and pixel spectra

True label

band_006

band_371

quaking aspen

black spruce

paper birch

white spruce
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black spruce paper birch quaking aspen white spruce

predicted label

Main canoj py species, BCEF, 2020

Main canopy species, BCEF, 2021

black spruce paper birch quaking aspen white spruce

Predicted label

Main canopy species, BCEF, 2020 & 2021

black spruce  paper birch quaking aspen white spruce
Predicted label
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black spruce
paper birch
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quaking aspen

Discriminate black / white
spruce, paper birch and
quaking aspen

Simplified spectra after band
correlation analysis



Presenter Notes
Presentation Notes
second approach is to identify crowns 
can also use the extracted crown spectra to distingusi coniferous and deciduous species


Stand-level analysis with hexagonal aggregates

Black Spruce Woodland with
Tussocks

Black Spruce TonaBck
Forest
i
. ‘ .
Closed Quaking Aspen !  Wet Sedge Meadow
Forest |

|

We move from pixel to stand scale by using a hexagonal grid

precision recall F1
BCEF 2020 (cross-validation) 0.61 0.63 0.57
BCEF 2021 0.74 0.69 0.71
CPCRW 2019 0.72 0.66 0.68

I Black Spruce/ Tamarack Forest

Il Closed Paper Birch Forest

I Closed Quaking Aspen Forest

I Closed Spruce Forest

"] Closed Spruce/Paper Birch/Aspen Forest
I Closed Tall Alder

[ Open Tall Alder Shrub

[ Open Tall Birch Shrub
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Presenter Notes
Presentation Notes
approach 1: overaly a grid - hexagonal grid.  
comma-shaped bluff bare/shrub; the ara SE of it black spruce woodland, wetland area / meadow is different from bluff


Changing fuel conditions: spruce beetle

_ Filling data gap:
' Extent and density of beetle-killed trees

Remotely sensed beetle-killed trees

Spruce Beetl
Southcentral Alaska
2016-2021

: ol 5 Bl Spruce beetle activity

AT

75 150

i 0 Probability 1 0 50m
A Rtei i s Damoge palygons have been exoggerated for better vishiliny
Fettig et al. Zwieback et al., in prep




Investigating large scale climate variability links to Alaska wildland fire

Decadal scale patterns of fire
perimeters suggest that low-frequency
climate variability is linked to fires!

Q: What are the climate drivers
of wildland fire in Alaska?
Q: Is there predictability of

these drivers?

Q: Do our current dynamical
forecasts provide skill for

wildland fire? What needs to
b€ improved in the models?

&

Fires in Alaska, 1940-2020

+ GRS

Anchorage e
¢
/a

'k W1941-1950 MI1971-1980  2001- 2010
1951-1960 W1981-1990  2011-2020
‘ M1961-1970 1991-2000 ' Boreal forest



Presenter Notes
Presentation Notes
Script info for this slide edit as you see fit:
  Our study area is the boreal forest of Alaska shown in grey-green in this figure along with decadal fire perimeters. The boreal forest is the worlds largest ecosystem covering 11% of the global land mass. It is found over nearly half of Alaska and includes it two largest urban areas. Next slide please… 


Fire Weather Predictability [FiWePs] group

- Group to tackle “What are the observed climate drivers of wildland fire in Alaska
and can they provide predictability at the seasonal scale?”

smaes Multi-pronged approach with early career researchers, students and fire managers.

Ty

. T a—— i idi Rick
Balhnger Rick A i , pogor Chris WalgCeC”la Borrles_ Joshua Eric Stevens Sl:elddl Thoman
Lader Uma S Elizabeth Strigle Hostler rader

ieniek Fischer
Bhatt Peter Bieniek
Start of season During the season End of season
June/July
Snowmelt timing temperature and Lightning
precipitation
Lead: P. Bieniek Lead: T. Ballinger/R. Lader Lead: J. Hostler

e Statistical analysis of observational and model data
e Evaluate the atmospheric drivers of each driver of the wildfire season including: aska
teleconnectons (e.g. El Nifio, PDO), weather map patterns E S



Presenter Notes
Presentation Notes
Seasons with big fires 


Peak of Fire Season Typically Occurs during Duff-driven Subseason

N
Alaska’s Fire Season in the Boreal Interior :rﬁgiscltive Service Area E;ot(i)e
. - . . ¢ ol ope
Historic Range of Buildup Index (BUI) and MODIS Fire Detections Tanana Valley-East AKOTE
Tanana Valley-West AKOTW
140 1 Duff 1 h 1 500 Upper Yukon Valley AK02
Wind Driven | 10rought 1+ piyrnal Effect Tanana Zone-North AKO3N
@ i Driven 1 Driven 450 2 Tanana Zone-South AKO3S
- 120 1 1 1 = Koyukuk and Upper Kobuk AKO04
S ] 1 . i 0 Middle Yukon AKOS
=+ ] : 3 Seward Peninsula AKO06
o ! =1 Lower Yukon AKO7
< 100 1 = 350 o Yukon-Kuskokwim Delta AK08
= 1 1 i) Kuskokwim Valley AKO09
& I . = Bristol Bay and AK Peninsula  AK10
I= [ 1 300 o Susitna Valley AK11
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E ] 1 250 § Matanuska Valley and Anchorage AK13
=] I : ; Kenai Peninsula AK14
= 60 ] 1 = Northern Panhandle AK15
a 1 200 & Central Panhandle AK16
st 1 vy *7) Southern Panhandle AK17
b4 —
a 1 =
g 40 ! 150 i‘\’:} Subregions
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= H -7} [ Western Interior
5 20 1 £
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1
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& & - =3 = o o b oy 4 2 R A o
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Seasonal evolution of BUI in interior Alaska (gray line).
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Using Seasonal Forecasts to Create Summer Fire Outlooks

e Seasonal forecasts from three
dynamical climate models:
o NOAA CFSv2
o ECMWF SEAS5
o Météo France Sys 8
o Combined into multi-model
ensemble (better skill)

e To calculate BUI, forecasts of:
o Temperature
o Precipitation

o  Humidity
Ensemble forecasting.
inifiali Tal https:// . wf.int/en/about/media-centre/f /2017 /fact-sheet-
e Forecasts initialized in: e B meathor foroomtmg e -centreocusfzDTriiactshee
o March

o May



March-Initialized Seasonal
Forecasts Show Skill at 3-
Month Lead

e Skill varies by BUI tercile, fire
subseason, and Alaska

subregion

e SkKkill increases in multimodel

ensemble

ROC skill scores for each BUI tercile, fire
subseason, and Alaska subregion.

Western Interior Eastern Interior

Southcentral

ROC Skill Score

ROC Skill Score

ROC Skill Score
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May-Initialized Seasonal Forecasts Have Same or
Greater Skill Compared to March-Initialized Forecasts
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e ~One month before the peak of the fire season
e Request by fire managers to help determine land conversion for rest of fire season

S

E. Int. W. Int.S. Cen

ROC and Heidke
skill scores for
March and May
forecasts.
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What Other Pieces Do We Need to Create an
Operational Product?

Diurnal

- Below average BUI

Average BUI

- Above average BUI

PSA not in study

2022 MME BUI forecast by fire subseason presented to fire managers in March 2022.

e Systematic evaluation of seasonal forecasts for Arctic regions

— Additional post-processing of variables to increase forecast skKill
e Combination of statistical forecasts (March) and dynamical forecasts (May)
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Presenter Notes
Presentation Notes
Hi, I am a phd student at UAF working on seasonal lightning predictions.
First, we will take a look at the lightning data for alaska. This data is from the ALDN and includes data for 1986 to 2022.
The first plot in the top center is a histogram of the natural logarithm of daily stroke counts. The figure in the top right shows is a time series of the seasonal record. 
The last plot is the seasonality of the lightning record, split into an early and later half. This shows a slight increase in lightning  for the more recent years, but this result has not yet been statistically tested.


Self-Organizing Maps Connect Climate and
Meteorology
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2m Temperature Anomaly
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Presenter Notes
Presentation Notes
The Self-Organizing Map is an algorithm similar to a principal component analysis. Patterns which are similar appear close in the 2-D grid. We can then match daily records to a node in the SOM network of each independent variable. This lets us bridge variability in the climate to meteorological processes such as those responsible for lightning. 


0.0

0.5

1.0

15

2.0 1

2.5

-0.5

Log Lightning by 500 hPa SOM Node

[3.69]

10

+850t_column

2
e
e
o
n
©

Lcape_row

From SOMs to Random Forest Classifier

-cape_column

500z_row
500z_col

tmsl_column
t2m_column

Ltcwv_row

Ltcwv_column
strokes

tmsl_row
t2m row

850t_row
850t_column 1
cape_row
cape_column 1
msl_row -
msl_column 4
t2m_row
t2m_column -
tcwv_row 1

tcwv_column -

500z_row

strokes

[
500z_col j. .

o

1.00

0.75

0.50

F0.25

I 0.00

F—0.25

-0.50

-0.75

-1.00


Presenter Notes
Presentation Notes
We then use SOM results as inputs for a Random Forest classifier to identify the intensity of lightning-days. The figure on the right is a correlation matrix of the SOM results and daily stroke counts. The correlation between any one predictor and the daily stroke count is weak at best. Also, the predictors are mostly uncorrelated except in the case where the variables are similar such as sea level pressure and 500hPa height. The figure on the right shows how the log-lightning counts vary over the 500hPa SOM from the previous slide. The idea is that the RF classifier can find combinations of the patterns in each SOM which lend themselves to more intense lightning events.


.

Random Forest Predicted
Classification Results Low Middle high
*AUROC scores above 0.5 and Low 73 78 24
F1-scores above 0.33 indicate T; _
outperforming naive 1> Middle 34 37 47
classification strategies. < High 12 19 31

*Model reasonably

lightning days while having

trouble distinguishing the 0.613 0.584 0.598 0.767
middle class from its

neighbors. Medium  0.440 0.314 0.366 0.559
.LOW.“ghtnm days .perff)rm High 0.533 0.723 0.614 0.785
best in precision while high

lightning days boast better Mean 0.529 0.540 0.526 0.704

recall.


Presenter Notes
Presentation Notes
Here are the results from the RF classification. The first table is a confusion matrix, and the second is a summary of selected model metrics. Most important to note is that the model is strongest at correctly identifying high lightning days, and weakest at distinguishing middle tercile days from the low and high days. 


Earlier snowmelt results in higher early season BUI

Average Snowoff Date Correlation with Nenana River Ice Breakup

Correlation of regional snowoff date and daily BUI 1959-2020

April 30 June 29

120 125 130 135 140 145 150 155 160 165 170 175 180 -0.8 -0.6 -0.4 -0.2 0 02 0.4 0.6 0.8

Peter Bieniek

Correlation

Snowmelt marks the start of the Alaska fire season in April-May
The date of snowmelt (snowoff) each spring was derived using

the ERA5 reanalySiS for 1959-present —Et':lst.em Interior —Wengrn Interior —S.out'h.central —N.ortlj.SIope
Snowmelt timing is tied to river ice breakup date in Interior 038 “Significant = Significant = Significant = Significant
Alaska 1-Apr 1-May 1-Jun 1-Jul 1-Aug 1-Sep

Date

Breakup date in Alaska is known to occur earlier during El Nifio
conditions (Bieniek et al. 2011) that offers potential predictability
Higher BUI early in the season linked with earlier snowmelt,
weaker relationship later in the season
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Snowmelt date correlated with teleconnections

Teleconnections and snowoff 95% significant correlations with daily BUI
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Severe fire years = 1 million+ acres burned

11 of the past 30 wildfire seasons
(1993-2022) in Alaska have been
severe with 1M+ acres burned.

The vast majority of wildfire activity
occurs during two subseasons:

o Duff (June 11 - July 20)

o Drought (July 21 - August 9)

Normally, mainland Alaska
transitions to westerly flow in late-
July/early-August, allowing cool,
moisture-laden air to move across
the state and effectively shut down
the fire season.

Area burned (million acres)

- 1997
1999
— 2002
2004
= 2005
- 2009
—_— 2010
— 2013
— 2015
—_— 2019
2022
—— all other years




Duff season (June 11 - July 21) anomalies
1M+ acre seasons vs. 1993-2022 climatology
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Correlations between acres burned and monthly
teleconnection indices show significant relationships

East Pacific Oscillation vs. Acres burned June EPO (1993-2022) vs. Acres burned
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Duff season anomalies in 1M+ acre seasons
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= Machine learning to understand seasonal fire weather
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Presenter Notes
Presentation Notes
CORE MESSAGE FOR PETER: We are looking at 
Peter - transition to ABI, To identify the climate drivers of fire weather, we are analyzing the data at weather to climate scales and next we will hear more about the Alaska Blocking Index. 


. Evergreen Forest
. Deciduous Forest
. Mixed Forest
. ‘Woodland

. Low Shrub
. Tall Shrub

Open Shrubs

McKinley burn remote
sensing synthesis

Herbaceous

Team: Chris Waigl, Heather Greaves,
Jen Schmidt, Matthew Berman

Question 1:

Can we model burn
status? Which predictors
are most important?
(400m perimeter of
building)

g ¢ 5 &k

Question 2:

Can we predict over-
and understory burn
severity?

Badola et al. fuels NASA ABoVE 2014 fuels



Synthesis paper - reflect on the process
Ongoing engagement with end users is key to actionable science

Role for boundary organization: Alaska
Fire Science Consortium

Introduced end users (fire managers,
fire weather forecasters) to the project
Regular bi-weekly meetings of project
open to end users provided easy way to
engage THROUGHOUT the research
process »
Used seasonal management workshops °
to raise awareness, report progress,

and get feedback from larger group of
end users ‘
Document our insights into this process .=




Highlights since last all-hands

e Promotions & New Jobs
e Conferences, Publications & Grants funded

e Progress on Yankovich Burn Interpretive site

What to expect on the trail & s & &

Take a wildfire walk

ich

Allow at least.

fire in Alaska's boreal forest.

What you’ll learn
o Wi necessar rleinthe borea forest
b Tpescttusin ke s
.'& Play-by-play of the Yankovich Road Fire

iy look 50 years after the fire

Yankovich
Interpretive Trail
and fire effects
monitoring


Presenter Notes
Presentation Notes
Santosh: Listed below please find the peer-reviewed publications where I am a co-author and related to wildfire research.
Badola, A., Panda, S.K., Roberts, D.A., Waigl, C., Jandt, R.R., Bhatt, U.S. 2022. A novel method to simulate AVIRIS-NG hyperspectral image from Sentinel-2 image for improved vegetation/wildfire fuel mapping, boreal Alaska. International Journal of Applied Earth Observation and Geoinformation,. V. 112 (102891). https://doi.org/10.1016/j.jag.2022.102891
Bar, Somnath, B. R. Parida, S.K. Panda. Changing forest fire regime with relation to climate conditions over western and eastern Himalaya, India in Handbook of Himalayan Ecosystems and Sustainability, Vol. 1: Spatio-Temporal Monitoring of Forests and Climate, Edited by B.R. Parida, CRC Press, Taylor & Francis Group. ISBN 9781032203140 (available Dec. 22, 2022).
Bar, S., Parida, B.R., Pandey, A.C., Shankar, B.U., Kumar, P., Panda, S.K., and Behera, M.D. 2022. Modeling and prediction of fire occurrences along an elevational gradient in Western Himalayas. Applied Geography, V. 151 (102867). https://doi.org/10.1016/j.apgeog.2022.102867



Final Year Activities

e Publications
o Many
e Data archiving
o Data to be archived
o Planning/understanding process
o Working to make it usable by
others
e Next funding applications
o High latitude predictability research

DATA SCIENCE

@E Axiom

Research Proposal
Writing



Conclusions

Key ecosystem services are demonstrating immediate resilience to wildfires, but
important exceptions exist.

Social and ecological characteristics are associated with wildfire damage of
property in the Wildland-Urban Interface.

Seasonal forecasting of BUI using dynamical models show limited skill at leads
of 3-5 months and greater skill at 1-2 month leads. The Fi\WePs teleconnections
analysis suggests using statistical models for forecasts needed for planning.
Statistical analysis suggests large-scale climate (teleconnection indices)
provides predictability for end of snow and start of seasonal rains.

Fuels remote sensing research has matured to integrate various datasets
spanning spatio-temporal scales to provide a more holistic view.

Novel approach leveraging the Sentinel 2 satellite imagery to simulate
hyperspectral data for improved boreal Alaska vegetation/fuel maps.

Acknowledgements: This material is based upon work supported by the National Science Foundation under award
#0OIA-1753748 and by the State of Alaska. 5



Presenter Notes
Presentation Notes
Key exciting  take home points!!! 

Fuels research, two take home points:
We modernized and streamlined the acquisition and processing of airborne hyperspectral data for a variety of wildfire applications including fuel, fire behavior, and burn severity characterization at meter scale.
We developed a novel approach to generate detailed and improved vegetation/fuel maps for boreal Alaska using widely available Sentinel 2 satellite imagery. Our novel approach allows for efficient updating of the vegetation/fuel map as soon as a new Sentinel scene is available.
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