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Motivation SOM Arrangement of 500hPa Geopotential SOM-RF model shows skill in predicting daily lightning
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Figure 1. Log of seasonal burned area in vs number of high tercile lightning days in eastern interior Alaska (left) and the binary classiﬁer, indicating that the o ey g ———

seasonality of daily mean (1986-2022) lightning stroke count (blue line) with 95 percent confidence interval (shading) (right)

large scale predictors have limits resolving for binary (Top), and tercile (Bottom) models.

magnitude of events.
* Reconstruction of duff season high tercile lightning events demonstrates SOM-

RF captures interseasonal variance of lightning.

Methods & Data

Data o Same T o,

« ERAS Reanalysis provided S00hPa ey s o
geopotential height (500z), 850hPa T
CAPE, SLP, 2m temperature, Sova e no:
convective precipitation & total column :
water vapor from 1959-2022 y .
« Historical lightning data from the ‘ o
Alaska Lightning Detection Network | | 'C x Ty N es_ub;egionslt |
(ALDN) for 1986-2022. fopege & & \

fsd

=
i
o

&— Predicted o
Actual

=

LA
1
£
o

Kuskokwim Valley AK09

# High Lightning Days

=

LA o

£

O
L3
o

o

=
o
e

Lower Yukon AKO7
Yukon-Kuskokwim Delta AKO08
AK17

B Southcentral
[ ] Western Interior

I 1 1 I 1 1 I
1960 1970 1980 1990 2000 2010 2020
Year

. Figure 8. Count of observed (blue) and constructed (yellow) high tercile lightning days in duff subseason by year
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* Compute daily anomalies & reduce | o |
. . . . o Figure 2. Predictive Service Areas (PSA) for Alaska are
dimensions using Self-()rganlzlng based on weather and topography.
Maps (SOMs).
* QA/QC & sum daily ALDN stroke

Summary

We are working with fire managers on predictions of daily lightning activity at
the subseasonal to seasonal scale.
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* The model is evaluated with the F,
score, which measures the model’s
skill to distinguish classes.

" oos 010 015 020~ ols 030 035 distribution for lightning in Alaska.

Figure 6. Modified null distribution for the Kolmogorov-Smirnov

Figure 3. Flow chart for SOM-RF model. . . . )
goodness of fit test — computed via Monte Carlo simulation.
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