

Figure 1. Log of seasonal burned area in vs number of high tercile lightning days in eastern interior Alaska (left) and seasonality of daily mean (1986-2022) lightning stroke count (blue line) with 95 percent confidence interval (shading) (right)

Data

- ERA5 Reanalysis provided 500hPa geopotential height (500z), 850hPa T CAPE, SLP, 2m temperature, convective precipitation & total column water vapor from 1959-2022
- Historical lightning data from the **Alaska Lightning Detection Network** (ALDN) for 1986-2022.

Data Preparation

- Compute daily anomalies & reduce dimensions using Self-Organizing Maps (SOMs).
- QA/QC & sum daily ALDN stroke counts over Predictive Service Area (PSA) then label by tercile and lightning day vs non-lightning day.

Methods

- SOMs cluster data and organize clusters by similarity. Daily mean fields are matched to the nearest cluster (Hewitson and Crane, 2002).
- Random forest classifier trained on **SOM projections of each anomaly** field to predict tercile class of daily lightning counts for Eastern Interior **PSA group.**
- Model training, performed in scikitlearn (Pedregosa et al, 2011), uses an 80-20 train-test split and 5-fold crossvalidation for hyperparameter tuning.
- The model is evaluated with the F₁ score, which measures the model's skill to distinguish classes.

Figure 2. Predictive Service Areas (PSA) for Alaska are based on weather and topography.

Figure 3. Flow chart for SOM-RF model.

Exploring the Climate Variability of Lightning in Alaska with a SOM-RF Model

AGU San Francisco California, 11-15 December 2023 Session A21C: Bridging the Gap from Climate to Extreme Weather

> Contact: jphostler@alaska.edu Photos of poster are welcome.

Joshua Hostler¹, Uma S. Bhatt¹, Thomas Ballinger², Peter Bieniek², Cecilia Borries-Strigle¹, Mitchell Burgard⁴, Jonathan Chriest³, Elizabeth Fischer², Rick Lader², Zachary Parish⁶, Heidi Strader⁵, Eric Stevens⁵, Richard Thoman¹, and Christine Waigl² ¹Geophysical Institute University Alaska Fairbanks (UAF), ²International Arctic Research Center UAF, ³National Weather Service, ⁴USDA Forest Service, ⁵Alaska Interagency Coordination Center, ⁶Unaffiliated

SOM-RF model shows skill in predicting daily lightning magnitudes from large scale patterns/predictors

- Two RF models are trained for each region the intensity of lightning day.
- **F**₁-scores range from 0 to 1 where scores above 0.5 (0.33) indicate outperforming binary (ternary) classification. AUROC ranges from 0.5 to 1 for binary and multiclass problems.
- the binary classifier, indicating that the magnitude of events.

- the subseasonal to seasonal scale.

- dominate.
- **Future work includes:**

https://doi.org/10.3354/CR022013

- https://doi.org/10.1139/X10-098.

This work was made possible through financial support from the State of Alaska and NSF **EPSCoR Grant OIA-1757348.**

of Alaska – the first classifies non-lightning and lightning days and the second predicts

uniform sampling of class frequencies for

Tercile classification loses some skill over large scale predictors have limits resolving

Region	Precision	Recall	F1-Score	AUROC
East Interior	0.768	0. 901	0. 829	0.822
West Interior	0.710	0.693	0.701	0.696
South Central	0.728	0.744	0.736	0.798
Combined	0.819	0.940	0.876	0.830
Region	Precision	Recall	F1-Score	AUROC
Region East Interior	Precision 0.609	Recall 0.610	F1-Score 0.608	AUROC 0.786
RegionEast InteriorWest Interior	Precision 0.609 0.538	Recall 0.610 0.535	F1-Score 0.608 0.527	AUROC 0.786 0.706
RegionEast InteriorWest InteriorSouth Central	Precision 0.609 0.538 0.440	Recall 0.610 0.535 0.430	F1-Score 0.608 0.527 0.436	AUROC 0.786 0.706 0.627

Figure 7. Precision, recall, F1-score, and AUROC for binary (Top), and tercile (Bottom) models.

Reconstruction of duff season high tercile lightning events demonstrates SOM-RF captures interseasonal variance of lightning.

Summary

We are working with fire managers on predictions of daily lightning activity at

The SOM bridges the gap from climate variability to daily lightning activity. The RF shows skill in predicting lightning activity, in terms of occurrence and intensity, given the state of the atmosphere represented as a position in the space of modes of variability (SOM space).

The SOM-RF has limited resolution in space and quantitative predictions due to the nature of the predictors, and the structure of the model.

Non-local features result in low skill at small spatial scales as local variances

• evaluation of the SOM-RF over dynamical forecasts, an analysis of related teleconnection patterns, and a power analysis for the modified KS test for EV distributions.

References

• Hewitson, B. C., & Crane, R. G. (2002). Self-organizing maps: applications to synoptic climatology. Climate Research, 22(1), 13–26.

• Kasischke, E. S., et al., 2010: Alaska's changing fire regime—Implications for the vulnerability of its boreal forests. Can. J. For. Res., 40, 1313–1324,

• Pedregosa et al., 2011: Scikit-learn: Machine Learning in Python, *JMLR* 12, 2825-2830.

Acknowledgements